Greetings Farmers:

HYDROPONIC VEGETABLE PRODUCTION CLASS – MARCH 27

The Montgomery County Extension Service will offer a Hydroponic Vegetable Production Class on Tuesday, March 27 at 6:00 PM in Mt. Sterling at the Montgomery County Extension Office. Stephen Berberich with the University of Kentucky Horticulture Department will be teaching the class that will focus mainly on small scale homeowner hydroponic production. Class topics will include: An Introduction to Hydroponic Production; Potential Hydroponic Crops; Supplies needed to Start Small Scale Production; Startup Costs; System Management and the difference between hydroponics and aquaponics. There is no cost to attend. If you would like to attend please call the Montgomery County Extension Office at 859-498-8741 and register.

TOBACCO PRODUCERS GAP TRAINING TO BE OFFERED MARCH 29

Tobacco growers needing to be GAP (Good Agricultural Practices) Certified will have an opportunity on March 29. The training will be held Thursday, March 29 at 1:00 PM in Mt. Sterling at the Montgomery County Extension Office located at 106 East Locust Street. The Tobacco GAP Connections Training is the unified certification process that is required and accepted by all tobacco purchasing companies. Producers that plan on attending this training need to bring their GAP Card to this training and register by calling the Montgomery County Extension Office at 859-498-8741 by March 27. If you have any questions about this, please call Gary Hamilton at the Montgomery County Extension Office 859-498-8741.
2018 PESTICIDE CARD TRAININGS – April 2

The Montgomery County Extension Service has two Pesticide Card Trainings scheduled for April. Both will be held on Monday, April 2. One will begin at 10:00 AM and will be held in the Montgomery County Extension Office the other will be held at 6:00 PM at the Montgomery County Extension Office. This is the training that provides you with the card that is required at the farm stores to buy restricted-use pesticides for personal use.

IMPORTANT MEETING FOR PRODUCERS PLANNING TO SELL AT THE 2018 MONTGOMERY COUNTY FARMERS’ MARKET

The Montgomery County Farmers Market will hold a mandatory training required by the Kentucky Department of Agriculture and the Kentucky Cabinet for Health and Family Services for all Farmers Market Vendors that plan on accepting WIC and Senior Coupons at the 2018 market.

The training will be Tuesday, April 17 at 6:00 PM in Mt. Sterling, at the Montgomery County Extension Office.

If you cannot attend you may send a representative to attend in your place. If you already have a WIC or Senior Stamp please bring them with you. This training will last about one hour and will be the only one offered this year.

2018 BEEF MANAGEMENT CALENDARS AVAILABLE

2018 Beef Cattle Management Calendars are now available at the Montgomery County Extension Office free of charge. These calendars are a useful tool for all beef cattle producers. Each month are suggested items for spring and fall calving herds, forages, record keeping and overall management suggestions as well as a gestational table.

Complaint Procedure

The University of Kentucky is committed to equal opportunity and nondiscrimination in all programs, events and services, regardless of economic or social status and does not discriminate on the basis of race, color, ethnic origin, national origin, creed, religion, political belief, sex, sexual orientation, marital status, age, veteran status, or physical or mental disability.

To file a complaint of discrimination, contact Tim West, UK College of Agriculture, 859-257-3879; Terry Allen or Patty Bender, UK Office of Institutional Equity and Equal Opportunity, 859-257-8927; or the USDA, Director of Civil Rights, Room 326W Whitten Bldg., 14th & Independence Ave, SW, Washington DC 20250-9410 (202-720-5964).

If trade names appear in articles, no discrimination is intended nor endorsement by the University of Kentucky is implied.
Preventing Grass Tetany In The Cow Herd

As spring approaches and grass begins to grow, grazing livestock may experience a forage-related problem known as grass tetany, grass staggers, lactation tetany, or hypomagnesemia. Grass tetany is a metabolic disorder caused by reduced magnesium (Mg) levels in the animal’s blood. In cattle, it generally affects older, lactating cows but can also be seen in dry cows, young cows, and in rare cases, growing calves. Symptoms often observed include nervousness, lack of coordination, muscular spasms, staggering, convulsions, coma, milk yield decrease, and death. If you suspect cattle are stricken with grass tetany, a veterinarian should be contacted immediately as early treatment can save animals.

Young cool-season grasses and small grains are commonly associated with this disorder. Grass tetany occurs most frequently in the spring, but may occur in the fall and winter when these forages start growing rapidly again or when cereal grain forages are grazed. High levels of nitrogen (N) and potassium (K) in the soil can increase the risk of grass tetany because they reduce the availability of magnesium to the animal. Farmers should refrain from placing cattle in a field that has been recently fertilized or has resulted in the disease before. Pastures where a significant amount of manure has been applied often have excessive potassium fertility increasing the risk to grass tetany because they reduce the availability of magnesium to the animal. Farmers should refrain from placing cattle in a field that has been recently fertilized or has resulted in the disease before. Pastures where a significant amount of manure has been applied often have excessive potassium fertility increasing the risk to grass tetany because they reduce the availability of magnesium to the animal.

Feeding high magnesium or high “mag” mineral supplements is the preferred method to reduce the occurrence of grass tetany. High “mag” mineral mixes are available at most feed stores and contain higher inclusions of magnesium oxide than other complete mineral mixes. Cattle should begin consuming this high “mag” mineral during the late winter months and into early spring when new plant growth is starting. In late spring once temperatures are consistently above 60°F, a producer can quit feeding the high “mag” mixtures. High mag mineral does not need to be fed year round, but is not problematic if it is. Free-choice high mag mineral should contain 12 to 15% magnesium from magnesium oxide. Cattle need to consume four ounces of the mineral supplement daily. Magnesium oxide is unpalatable, which can result in low mineral intake. Co-product feedstuffs such as dried distillers grains, molasses or a flavoring agent is added to the mineral mix to increase palatability.

If free-choice mineral is not a viable option, producers can also mix their own supplement by adding the appropriate amount of magnesium oxide to another palatable feedstuff, i.e. feeding in or with 1 to 2 lbs. of corn or other by-product that provides 20-25 grams of magnesium. For dairy cows, magnesium oxide can be added to the grain mix to provide an intake of 20 g of magnesium per cow per day. Magnesium oxide may be routinely used as a buffer in these grain mixes for dairy cows, so producers should check with their nutritionist to make sure adequate amounts and proper sources are being used to prevent grass tetany.

Besides magnesium oxide, another source of Mg is magnesium sulfate, which is more palatable than magnesium oxide. The downside to feeding magnesium sulfate is it can be an issue where cattle are consuming high sulfate water or other feedstuffs high in sulfur. Producers that are feeding corn co-products (distiller’s grains or corn gluten feed), adding additional sulfur to the diet in the form of magnesium sulfate, or have high sulfur water could create a sulfur toxicity.

Grass tetany blocks provide magnesium similar to that of a mineral supplement. The major disadvantage of this method is that all the animals may not consume an adequate amount of the block. Multiple blocks should be available with one block per ten cows. The season for grass tetany will be developing as temperatures rise and grasses begin to grow. To reduce health problems and livestock death to this disorder, it is important to provide a quality high “mag” mineral or supplement containing Magnesium oxide.
EQUIPMENT SAFETY STARTS WITH PRE-SEASON MAINTENANCE

Farmers of all kinds know the importance of good preparation. They realize that doing the right things early in the season leads to good crops or healthy livestock later on. The same preparation is true for safety on farms. If you are an agricultural producer, now is the time to take action to prevent injuries, before things get too busy in the spring.

Start by giving your equipment a thorough inspection. The obvious things to look for are missing or broken guards and shields, burnt-out flashers and taillights used for road travel, a faded SMV emblem, or other safety-related features. Those guards and shields were put there for a reason, and once you are busy with planting or harvest you may never get around to replacing them.

Many machine-related injuries occur when equipment malfunctions out in the field, causing the operator to get off the tractor and make adjustments or repairs. The safest place for the operator is on the seat of the tractor, not putting his or her hands into the equipment. So make sure that bearings, chains, belts, sprockets, universal joints, hydraulic hoses, or other functional parts of your equipment are in good condition, lubricated, adjusted, or replaced as appropriate. Be sure everything is operating smoothly, so that you stay on the tractor seat and don’t have problems in the field.

Inspect tires

Tires on tractors, wagons, and other implements are another component to be inspected. Not only are proper inflation pressures important, but if you have tires with chronic leaks or other damage that can cause break-downs, you need to get the leaks fixed or the tires replaced. You don’t want to be jacking up a tractor or wagon out in the field or out on the road. Now is the time to take care of these things.

Prevent tractor overturn with ROPS

If you do not have a ROPS, or Roll-Over Protective Structure, on your tractor, you are at risk of dying from a tractor overturn. Across the country, the tractor overturn is the single most common way that tractor operators get killed. Tractor over-turns can occur in a variety of situations, some of which are beyond the control of the operator, so the one sure way to prevent a serious injury or fatality is to have a ROPS. This is a perfect time to retrofit a ROPS to your tractor, and you can start by contacting your local dealer. Also, the online “Kentucky ROPS Guide” can help you find suppliers of ROPS for your make and model. Just search for “Kentucky ROPS Guide” on the internet and follow the simple instructions.

Preparation is everything, and now is the time to prepare for a safe farming season. Source: Mark Purschwitz, Ph.D., is an Extension Professor in Agricultural Safety and Health.

NEW BURLEY TOBACCO EXTENSION WEBSITE

A revised version of the Burley Tobacco Extension Website is now live at the link below. The new site features an expanded photo gallery/diagnostic aid which will keep expanding as we get additional images and information about common problems burley growers may encounter.

https://burleytobaccoextension.ca.uky.edu/

DECEASED ANIMAL REMOVAL

If you need to have dead farm animals removed from your Montgomery County Farm, Call Randy White at 859-585-6509 or 585-6760. This program is sponsored by the Montgomery County Fiscal Court with partial funding from the Governor’s Office of Agriculture Policy and approved by the Montgomery County Agriculture Development Council.

University of Kentucky
Cooperative Extension Service
Montgomery County
106 East Locust Street
Mt Sterling KY 40353

Gary D. Hamilton
County Extension Agent for Agriculture & Natural Resources Education
Phone: 859-498-8741
Cell: 606-782-0335
Fax: 859-498-8712
ghamilo@uky.edu
Many Benefits to Soil Testing

If you want to increase crop yields or vegetable and flower garden production this spring, have your soil tested. This is the only way to determine whether the soil has the right alkalinity or acidity to release available nutrients.

The measure of soil acidity is pH, or potential hydrogen. It controls availability of all other nutrients. Generally, agronomic crops grow best when the pH is between six and seven. Some horticultural crops such as azaleas and blueberries require much more acidic soil conditions, in the range of 4.5.

An incorrect soil pH can cause problems. For example, a low soil pH can induce a calcium deficiency; while a high one can cause iron and zinc deficiencies.

Soil test results will give you research-based information on how much lime to use to make the soil more alkaline or sulfur to apply to make it more acidic.

Having the proper levels of soil nutrients will help maximize economic yields. This is increasingly important this year, because increasing energy costs mean higher fertilizer prices. In fact, farmers can expect to pay about 30 percent more for potash (potassium fertilizer) this year compared to last year.

A good soil testing program will maximize returns on your fertilizer investment by identifying fields that already have sufficient nutrients and those with inadequate fertility. Higher fertilizer prices make blanket applications increasingly expensive.

The past two growing seasons have been ideal for crop production, resulting in record yields in many areas. Additional soil nutrients have been removed with harvested crops. These fields likely are lower in essential nutrients and therefore will produce highest return on your fertilizer investment.

Soil testing also enables landowners to identify environmentally sensitive areas. For example, excessive phosphorus can cause low oxygen levels in lakes and streams that may lead to fish kills. Many Kentucky soils, especially in the bluegrass region are naturally very high in phosphorus. A soil test will reveal these levels so no additional phosphorus fertilizer will be added.

Each county Extension office has information on taking soil samples and sample bags or boxes. There is a nominal fee to cover the soil analysis costs.

You need to take different samples for various land uses such as agricultural fields, lawn, garden, fruit trees, ornamental shrubs and azaleas because these may have distinct fertility and acidity or alkalinity requirements.

Take a sample from poor growing area and from adjacent areas of good growth. Mark each sample with a letter, or numbers on a field map. Collect at least 10 soil cores for small areas and up to 20 cores for larger fields.

How deeply you take cores for farm use depends on the tillage system used. For tilled areas, take cores from the surface to plow depth, usually six to eight inches. Take cores down to a four-inch depth in no-till fields and pastures.

For home lawns, take cores from the surface down to four inches. For gardens, ornamentals and fruit trees, take cores down to six to eight inches.

Be sure to take all cores from an area at the same depth.

After you’ve collected soil cores, put them in a clean, dry plastic bucket, crush the soil and thoroughly mix it. Allow this to air dry in an open, contamination-free space.

When it dries, fill up about a pint container of the soil mix and bring it to your County Extension Office for testing.

It’s a good idea to take core samples around the same time each year to compare results from year to year.

To obtain the most accurate soil fertility report, contact your county Extension
RAISED BEDS MAKE GARDENING EASIER

Growing your own in a garden makes it convenient to harvest fresh, ripe tomatoes or delicious cucumbers. The garden doesn’t have to be large or even require a tiller when completed in raised beds. Also, raised beds supply a solution for a poorly drained site, allows the soil to be amended easily to provide better growing conditions, fits in small spaces, and reduces the amount of stooping required to maintain the garden.

Usually, raised beds are at least 6 to 8 inches in height above the soil surface. To make it more accessible for harvesting and removing weeds, it may be higher. A frame to support the soil may be constructed of untreated wood, stone, concrete block, brick, or recycled plastic boards, or soil may be mounded without a rigid structure. Woods naturally resistant to decay include cedar, redwood, and black locust.

The length of a bed will vary according to the space available. Typically, the width of it should be no more than 4 feet wide in order to reach into the bed from either side comfortably. If the raised bed is maintained from one side, then make it 2 feet wide or as wide as you can reach to the other side. Soil compaction is avoided by not walking in the bed, which allows plants to grow better. Maintaining an aisle of 2 to 4 feet between beds permits easy access with tools, hose reels, chairs, or wheelchairs.

The best location for a vegetable garden is in full sun, however many vegetables will produce a good crop if they receive 6 hours of direct sunlight a day.

Locate it away from trees if possible so that the roots will not grow into the bed and compete with the vegetables for water and nutrients. Do not place gardens near black walnut (Juglans nigra) trees since walnuts produce a compound in their roots, shoots, and leaves that is toxic to many plants including several vegetables.

To make life easier, locate your beds where water is readily available. Raised beds dry out quickly and require more frequent watering than conventional gardens.

In preparing soil for the bed, adding components such as organic matter and porous material will improve soil structure. An ideal soil for raised beds consists of equal volumes of good garden soil, organic matter such as compost, peat moss, and porous material like vermiculite or perlite. If good quality garden soil is not available, substitute with additional organic matter. Lime and fertilize as recommended by a soil test of the finished soil mix. Adding too much lime and fertilizer can result in poor plant growth.
After the soil is prepared, there are several ways to plant the bed. You may choose to plant in rows in the bed, or simply group similar plants together by maturation time or height. Keep in mind that a diversity of plants will promote a more stable ecosystem. Monoculture, or grouping together the same or closely related crops, may result in more pest and disease issues. Plant diversity tends to encourage beneficial insects and microorganisms in the planting area. You may even want to include a few flowers in your garden to increase the variety of plants being grown.

Plan to intensively garden the space to produce more vegetables. For example, cool season vegetables such as spinach, lettuce, cabbage, and broccoli can be replaced after harvesting with warm season vegetables such as tomatoes, beans, peppers, squash, and corn. Then cool season vegetables can be planted again in the fall. Another way to garden intensively is to train plants vertically when possible.

Remember that it is a good practice to move plants around if your gardening space allows. For example, if you have multiple beds, don’t grow tomatoes and related crops like potatoes, peppers, and eggplants in the same bed for more than 2 or 3 years. Give the soil a break from tomatoes and related crops for a couple of years by moving them to another bed, growing them in containers, or not growing them at all. This will prevent soil pests from building up to high numbers that will eventually negatively impact the performance of your plants.

Remember that raised beds may dry out faster than conventional gardens. A layer of mulch will reduce weed growth and water loss. A 1- to 2-inch layer of organic mulch such as compost, straw, or grass clippings will slowly break down and contribute organic matter to the soil. A few layers of newspaper beneath organic mulch will help to prevent weed germination.

At least 1 inch of rainfall or supplemental irrigation per week is best. When supplemental irrigation is applied, it is better to use drip or soaker hose irrigation since these tend to direct water to the root system and not onto the plant itself to help reduce disease development. Source: Annette Meyer Heisdorffer, PhD.